1,095 research outputs found

    A quantum Monte Carlo study on the superconducting Kosterlitz-Thouless transition of the attractive Hubbard model on a triangular lattice

    Full text link
    We study the superconducting Kosterlitz-Thouless transition of the attractive Hubbard model on a two-dimensional triangular lattice using auxiliary field quantum Monte Carlo method for system sizes up to 12×1212\times 12 sites. Combining three methods to analyze the numerical data, we find, for the attractive interaction of U=−4tU=-4t, that the transition temperature stays almost constant within the band filling range of 1.0<n<1.41.0 < n < 1.4, while it is found to be much lower in the n<1n<1 region.Comment: RevTeX 6 page

    Investigation of passive shock wave-boundary layer control for transonic airfoil drag reduction

    Get PDF
    The passive drag control concept, consisting of a porous surface with a cavity beneath it, was investigated with a 12-percent-thick circular arc and a 14-percent-thick supercritical airfoil mounted on the test section bottom wall. The porous surface was positioned in the shock wave/boundary layer interaction region. The flow circulating through the porous surface, from the downstream to the upstream of the terminating shock wave location, produced a lambda shock wave system and a pressure decrease in the downstream region minimizing the flow separation. The wake impact pressure data show an appreciably drag reduction with the porous surface at transonic speeds. To determine the optimum size of porosity and cavity, tunnel tests were conducted with different airfoil porosities, cavities and flow Mach numbers. A higher drag reduction was obtained by the 2.5 percent porosity and the 1/4-inch deep cavity

    Critical Temperature Tc and Charging Energy Ec between B-B layers of Superconducting diboride materials MgB2 in 3D JJA model

    Full text link
    The diboride materials MB2 (M = Mg, Be, Pb, etc.) are discussed on the basis of the 3D Josephson junction array (JJA) model due to Kawabata-Shenoy-Bishop, in terms of the B-B layers in the diborides analogous to the Cu-O ones in the cuprates. We propose a possibility of superconducting materials with the MgB2-type structure which exhibit higher critical temperature Tc over 39K of MgB2. We point out a role of interstitial ionic atoms (e.g., Mg in MgB2) as capacitors between the B-B layers, which reduce the charging coupling energy in JJA.Comment: 3 pages, 1 figure included; to be published in J. Phys. Soc. Jpn. 70, No.10 (2001

    Two-Band-Type Superconducting Instability in MgB2

    Full text link
    Using the tight-binding method for the π\pi-bands in MgB2_2, the Hubbard on-site Coulomb interaction on two inequivalent boron pzp_z-orbitals is transformed into expressions in terms of π\pi-band operators. For scattering processes relevant to the problemin which a wave vector {\bf q} is parallel to z^\hat{z}, it is found to take a relatively simple form consisting of intra-band Coulomb scattering, interband pair scattering etc. with large constant coupling constants. This allows to get a simple expression for the amplitude of interband pair scattering between two π\pi-bands, which diverges if the interband polarization function in it becomes large enough.The latter was approximately evaluated and found to be largely enhanced in the band structure in MgB2_2. These results lead to a divergent interband pair scattering, meaning two-band-type superconducting instability with enhanced TcT_c. Adding a subsidiary BCS attractive interaction in each band into consideration, a semi-quantitative gap equation is given, and TcT_c and isotope exponent α\alpha are derived. The present instability is asserted to be the origin of high TcT_c in MgB2_2.Comment: 4 pages, to be published in J. Phys. Soc. Jpn. vol. 70, No.

    Very fast formation of superconducting MgB2/Fe wires with high Jc

    Full text link
    In this paper we have investigated the effects of sintering time and temperature on the formation and critical current densities of Fe-clad MgB2 wires. MgB2 wires were fabricated using the powder-in-tube process and sintered for different periods of time at predetermined temperatures. All the samples were examined using XRD, SEM and magnetisation measurements. In contrast to the common practice of sintering for several hours, the present results show that there is no need for prolonged heat treatment in the fabrication of Fe-clad MgB2 wires. A total time in the furnace of several minutes is more than enough to form nearly pure MgB2 with high performance characteristics. The results from Tc, Jc and Hirr show convincingly that the samples which were sintered for 3 minutes above 800 oC are as good as those sintered for longer times. In fact, the Jc field performance for the most rapidly sintered sample is slightly better than for all other samples. Jc of 4.5 times 10 ^5 A/cm2 in zero field and above 10 ^5 A/cm2 in 2T at 15 K has been achieved for the best Fe-clad MgB2 wires. As a result of such a short sintering there is no need for using high purity argon protection and it is possible to carry out the heat treatment in a much less protective atmosphere or in air. These findings substantially simplify the fabrication process, making it possible to have a continuous process for fabrication and reducing the costs for large-scale production of MgB2 wires.Comment: 15 pages, one table, 9 figures, submitted to Physica C on June 8, 200

    Electronic Structures of CaAlSi with Different Stacking AlSi Layers by First-Principles Calculations

    Full text link
    The full-potential linear augmented plane-wave calculations have been applied to investigate the systematic change of electronic structures in CaAlSi due to different stacking sequences of AlSi layers. The present ab-initio calculations have revealed that the multistacking, buckling and 60 degrees rotation of AlSi layer affect the electronic band structure in this system. In particular, such a structural perturbation gives rise to the disconnected and cylindrical Fermi surface along the M-L lines of the hexagonal Brillouin zone. This means that multistacked CaAlSi with the buckling AlSi layers increases degree of two-dimensional electronic characters, and it gives us qualitative understanding for the quite different upper critical field anisotropy between specimens with and without superstructure as reported previously.Comment: 4 pages, 4 figures, to be published in J. Phys. Soc. Jp

    Soft x-ray spectroscopy measurements of the p-like density of states of B in MgB2 and evidence for surface boron oxides on exposed surfaces

    Full text link
    Soft X-ray absorption and fluorescence measurements are reported for the K-edge of B in MgB2. The measurements confirm a high density of B pxy(sigma)-states at the Fermi edge and extending to approximately 0.9 eV above the edge. A strong resonance is observed in elastic scattering through a core-exciton derived from out-of-plane pz(pi*)-states. Another strong resonance, observed in both elastic and inelastic spectra, is identified as a product of surface boron oxides.Comment: 7 pages total, 4 figures, submitted to Phys. Rev. Let

    Two-Dimensional Sigma-Hole Systems in Boron Layers: A First-Principles Study on Mg_{1-x}Na_xB_2 and Mg_{1-x}Al_xB_2

    Get PDF
    We study two-dimensional sigma-hole systems in boron layers by calculating the electronic structures of Mg_{1-x}Na_xB_2 and Mg_{1-x}Al_xB_2. In Mg_{1-x}Na_xB_2, it is found that the concentration of sigma holes is approximately described by (0.8 + 0.8 x) * 10^{22} cm^{-3} and the largest attainable concentration is about 1.6 * 10^{22} cm^{-3} in NaB_2. In Mg_{1-x}Al_xB_2, on the other hand, it is found that the concentration of sigma holes is approximately described by (0.8 - 1.4 x) * 10^{22} cm^{-3} and sigma holes are disappeared at x of about 0.6. These relations can be used for experimental studies on the sigma-hole systems in these materials.Comment: 5 pages, 5 figure

    Imaging Flux Vortices in MgB2 using Transmission Electron Microscopy

    Full text link
    We report the successful imaging of flux vortices in single crystal MgB2 using transmission electron microscopy. The specimen was thinned to electron transparency (350 nm thickness) by focussed ion beam milling. An artefact of the thinning process was the production of longitudinal thickness undulations of height 1-2 nm in the sample which acted as pinning sites due to the energy required for the vortices to cross them. These had a profound effect on the patterns of vortex order observed which we examine here. Supplementary information can be downloaded from http://www-hrem.msm.cam.ac.uk/people/loudon/#publicationsComment: 3 pages, 2 figures to appear in Physica C. Supplementary information can be downloaded from http://www-hrem.msm.cam.ac.uk/people/loudon/#publications. The discussion of the vortex-free region near the sample edge has been revised in response to referees' comments. Changes have been made to clarify that the specimen thickness is 250nm parallel to the c-axis but 350nm parallel to the electron bea

    Flux Jumping and a Bulk-to-Granular Transition in the Magnetization of a Compacted and Sintered MgB2 Superconductor

    Full text link
    The recent discovery of intermediate-temperature superconductivity (ITC) in MgB2 by Akimitsu et al. and its almost simultaneous explanation in terms of a hole-carrier-based pairing mechanism by Hirsch, has triggered an avalanche of studies of its structural, magnetic and transport properties. As a further contribution to the field we report the results of field (H) and temperature (T) dependent magnetization (M) measurements of a pellet of uniform, large-grain sintered MgB2. We show that at low temperatures the size of the pellet and its critical current density, Jc(H) - i.e. its M(H) - ensure low field flux jumping, which of course ceases when M(H) drops below a critical value. With further increase of H and T the individual grains decouple and the M(H) loops drop to lower lying branches, unresolved in the usual full M(H) representation. After taking into account the sample size and grain size, respectively, the bulk sample and the grains were deduced to exhibit the same magnetically determined Jc s (e.g. 105 A/cm2, 20 K, 0T) and hence that for each temperature of measurement Jc(H) decreased monotonically with H over the entire field range, except for a gap within the grain-decoupling zone.Comment: 7 pages, 6 figures, Changes: Fig 6 Vertical scale an order of magnitude out (changed figure and associated text). Also corrected typo in last sectio
    • …
    corecore